Chemo-mechanical coupling in F(1)-ATPase revealed by catalytic site occupancy during catalysis.

نویسندگان

  • Rieko Shimo-Kon
  • Eiro Muneyuki
  • Hiroshi Sakai
  • Kengo Adachi
  • Masasuke Yoshida
  • Kazuhiko Kinosita
چکیده

F(1)-ATPase is a rotary molecular motor in which the central gamma subunit rotates inside a cylinder made of alpha(3)beta(3) subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting gamma angle defined as 0 degrees , phosphate is released at approximately 200 degrees , and ADP is released during quick rotation between 240 degrees and 320 degrees that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the mechanism of ATP hydrolysis in F1-ATPase.

Most of the cellular ATP in living organisms is synthesized by the enzyme F(1)F(o)-ATP synthase. The water soluble F(1) part of the enzyme can also work in reverse and utilize the chemical energy released during ATP hydrolysis to generate mechanical motion. Despite the availability of a large amount of biochemical data and several x-ray crystallographic structures of F(1), there still remains a...

متن کامل

Complex cooperativity of ATP hydrolysis in the F(1)-ATPase molecular motor.

F(1)-ATPase catalyses ATP hydrolysis and converts the cellular chemical energy into mechanical rotation. The hydrolysis reaction in F(1)-ATPase does not follow the widely believed Michaelis-Menten mechanism. Instead, the hydrolysis mechanism behaves in an ATP-dependent manner. We develop a model for enzyme kinetics and hydrolysis cooperativity of F(1)-ATPase which involves the binding-state cha...

متن کامل

Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 ATPase.

The crystal structure of yeast mitochondrial F(1) ATPase contains three independent copies of the complex, two of which have similar conformations while the third differs in the position of the central stalk relative to the alpha(3)beta(3) sub-assembly. All three copies display very similar asymmetric features to those observed for the bovine enzyme, but the yeast F(1) ATPase structures provide...

متن کامل

Coupling of Rotation and Catalysis in F1-ATPase Revealed by Single-Molecule Imaging and Manipulation

F(1)-ATPase is a rotary molecular motor that proceeds in 120 degrees steps, each driven by ATP hydrolysis. How the chemical reactions that occur in three catalytic sites are coupled to mechanical rotation is the central question. Here, we show by high-speed imaging of rotation in single molecules of F(1) that phosphate release drives the last 40 degrees of the 120 degrees step, and that the 40 ...

متن کامل

Escherichia coli ATP synthase (F-ATPase): catalytic site and regulation of H+ translocation.

We discuss our recent results on the Escherichia coli F-ATPase, in particular its catalytic site in the beta subunit and regulation of H+ transport by the gamma subunit. Affinity labelling experiments suggest that beta Lys-155 in the glycine-rich sequence is near the gamma-phosphate moiety of ATP bound at the catalytic site. The enzyme loses activity upon introduction of missense mutations in b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 98 7  شماره 

صفحات  -

تاریخ انتشار 2010